วันพุธที่ 11 มกราคม พ.ศ. 2555

จำนวนเชิงซ้อน

จำนวนเชิงซ้อน (อังกฤษ : complex number) ในทางคณิตศาสตร์ คือ เซตที่ต่อเติมจากเซตของจำนวนจริงโดยเพิ่มจำนวน i ซึ่งทำให้สมการ i2 + 1 = 0 เป็นจริง และหลังจากนั้นเพิ่มสมาชิกตัวอื่นๆ เข้าไปจนกระทั่งเซตที่ได้ใหม่มีสมบัติปิดภายใต้การบวกและการคูณ จำนวนเชิงซ้อน z ทุกตัวสามารถเขียนอยู่ในรูป x + iy โดยที่ x และ y เป็นจำนวนจริง โดยเราเรียก x และ y ว่าส่วนจริง (real part) และส่วนจินตภาพ (imaginary part) ของ z ตามลำดับ


เซตของจำนวนเชิงซ้อนทุกตัวมักถูกแทนด้วยสัญลักษณ์ \mathbb{C} จากนิยามข้างต้นเราได้ว่าเซตของจำนวนจริงเป็นสับเซตของเซตของจำนวนเชิงซ้อน ดังนั้นจำนวนจริงทุกตัวเป็นจำนวนเชิงซ้อน เราสามารถบวก ลบ คูณ และหารสมาชิกสองตัวใดๆ ของเซตของจำนวนเชิงซ้อนได้ (เว้นแต่ในกรณีที่ตัวหารคือศูนย์) และผลลัพธ์ที่ได้จำเป็นจำนวนเชิงซ้อนเสมอ ดังนั้นในทางคณิตศาสตร์เราจึงกล่าวว่าเซตของจำนวนเชิงซ้อนเป็นฟีลด์ นอกจากนี้เซตของจำนวนเชิงซ้อนยังมีสมบัติปิดทางพีชคณิต (algebraically closed) กล่าวคือ พหุนามที่มีสัมประสิทธิ์เป็นจำนวนเชิงซ้อนจะมีราก (พหุนาม)เป็นจำนวนเชิงซ้อนด้วย สมบัตินี้เป็นที่รู้จักในชื่อทฤษฎีบทมูลฐานของพีชคณิต


จำนวนเชิงซ้อนเขียนในรูป a+bi  หรือ  (a,b)
โดย a คือจำนวนจริง และ b คือส่วนที่เป็นจินตภาพ ส่วน i  มีค่าเท่ากับ รู้ท -1
โดย a และ b เป็นจำนวนเต็ม เช่น 1+2i ,80+7i, หรือเขียนอีกแบบจะได้ (1,2) (80,7)




ไม่มีความคิดเห็น:

แสดงความคิดเห็น